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Peak Estimation of a Spectrum from Noisy
Measurements by Least Squares Piecewise
Monotonic Data Approximation

I. C. Demetriou

Abstract—We consider the application of the piecewise mono-
tonic data approximation method to some problems that are de-
rived from peak estimation of univariate spectra contaminated
by random errors. This method makes the smallest change to
the data such that the first differences of the smoothed values
change sign a prescribed number of times. The algorithms
that we have developed for this challenging combinatorial
calculation are very efficient providing optimal solutions in
quadratic complexity with respect to the number of data. We
present examples that show the efficacy of the method in
peak estimation to data from a Raman spectrum. Our results
exhibit some strengths and certain advantages of the method.
Therefore, they may be helpful to the development of new
algorithms that are particularly suitable for peak estimation
in spectroscopy calculations.

Index Terms—data smoothing, divided differences, peak
finding, piecewise monotonic approximation, Raman spectrum,
spectroscopy.

I. INTRODUCTION

Peak estimation problems appear inherently in spec-
troscopy. In proton spectroscopy, for example, magnetic
resonance allows examining the metabolism of mass lesion
areas due to the height of the peaks. Infrared and Raman are
the most common vibrational spectroscopy techniques for
assessing molecular motion and fingerprinting species. For
the Raman spectra, the location of peaks and their intensities
are the signature of a sample of an organic or an inorganic
compound. In general, the detection of peaks and troughs in
time series is a long-standing problem in many applications.
Peaks and troughs represent the most interesting trends in
time series analyses.

We consider the important problem in which a number
of values of a univariate spectrum have been measured,
but the measurements include errors and the data are to
be used to estimate the peaks of the spectrum. We assume
that if the spectrum has turning points, then the number of
measurements is substantially greater than the number of
turning points. Therefore we apply a method that smooths
the data by imposing a limit on the number of sign changes
in the sequence of the first differences. To be precise if
k —1 is the limit, then the piecewise linear interpolant to the
approximated values is composed of at most £ monotonic
sections.

The positions of the joins of the monotonic sections
are integer variables of the optimization calculation whose
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optimal values have to be found automatically, but, if n is
the number of data, about O(n*) combinations of positions
can occur that makes it impossible to test each one separately.
This problem was studied in depth by Demetriou and Powell
[10] and furthermore some highly efficient algorithms and
software have been developed by Demetriou [5], [6] and
[8]. The algorithms calculate efficiently a global solution in
O(kn?) computer operations, a complexity which reduces
to only O(n) when ¥ = 1 or k = 2. The piecewise
monotonicity method decomposes the spectrum into at most
k monotonically increasing and decreasing sections. Each
peak is the join of an increasing and a decreasing section.

Some advantages of our technique over other smoothing
techniques are as follows. First, there is no need to choose a
set of approximating functions as for example in splines or
wavelets [1], [11], [14]. Second, the smoothing process is a
projection because, if it is applied to the smoothed values,
then no changes are made to. Third, it is not inefficient to
run the algorithm of [10] for a sequence of integers k if
a suitable value is not known in advance. An immediate
consequence is that due to the nature of the smoothing
condition that is defined by the constraints on the components
of the approximant, irregular errors in the data do not cause
piecewise monotonic approximation to ripple. Moreover, a
feature of the piecewise monotonic approximation is that the
presence of a peak does not introduce any perturbation away
from the peak. In other words, the method avoids Gibb’s
ringing and is able to represent the data at a peak without
becoming less accurate away from the peak. This makes the
method highly suitable for the peak estimation purpose.

The paper is organized as follows. In Section II we outline
the method for piecewise monotonic data approximation. In
Section III we present an example that illustrates the esti-
mations of peaks in a Raman spectrum sample. The results
are instructively analyzed and the estimation capability of
the method is demonstrated. In Section IV we present some
concluding remarks and discuss on the possibility of future
directions of this research.

More generally one could apply piecewise monotonic
approximation to a variety of situations in which peak estima-
tions are required but we do not have sufficient information
to state a parametric form. Such situations are quite common
so applications of piecewise monotonic approximation may
arise in several fields.

Fortran software packages that implement different ver-
sions of the method were developed by the author [6], [9].
They are quite suitable for processing large numbers of data
in real time. In order to apply the piecewise monotonicity
method to a sequence of data, only one parameter, namely



k, must be set by the user. Then the method automatically
obtains the optimal turning points and the smoothed values.
The calculations were performed on a HP 8770w portable
workstation with an Intel Core 17-3610QM, 2.3 GHz proces-
sor, which was used with the standard Fortran compiler of the
Intel Visual Fortran Composer XE2013 in single precision
arithmetic operating on Windows 7 with 64 bits word length.

II. LEAST SQUARES PIECEWISE MONOTONIC DATA
APPROXIMATION

This section presents some background results and no-
tation. For proofs of our statements one may consult [10]
and [5]. The user provides the data {¢; : i = 1,2,...,n}
and an integer k, which is an upper bound on the number
of monotonic sections of the smoothed values. The method
seeks values {y; : ¢ = 1,2,...,n} that minimize the sum of
squares of residuals
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Without loss of generality we assume that the first section
is increasing. Assuming that the data do not satisfy the
constraints, it follows that the optimal integers {t; : j =
1,2,...,k — 1} are all different. Their values are calculated
by a dynamic programming method, whose basic version is
described below.

The efficiency of the method depends on two main prop-
erties of the optimal fit. One is that if 1 < j < k — 1 then
the optimal value of y;; is independent of {y; : i # t;} and
at the turning points (local extrema) of the fit we have the
interpolation conditions

Yo, = btyy = 1,2,k — 1. @)

These conditions are fundamental to the peak estimation
problem. Secondly, the associated optimal piecewise mono-
tonic approximation consists of separate optimal mono-
tonic sections of adjacent components that increase and
decrease alternately between adjacent integers of the se-
quence {t; : j = 0,1,...,k}. Thus, the components
{yi T = tj—htj—l + 1,...,tj}, 1 S ] S :ZC, minimize

the sum
tj

(yi — ¢i)? (5)

i=tj—1
subject to the increasing monotonicity constraints
Yi < Yir1,t =tj_1,t;—1+1,...,t;, if jisodd  (6)
or subject to the decreasing monotonicity constraints
Yi > Yir1,0 =tj_1,t;_1+1,...,¢;, if jiseven. (7)

For all positive integers s and ¢ such that 1 < s <t < n, we
define a(s,t) to be the least value of (5) subject to (6), after

we replace t;_1 by s and t; by ¢, and analogously we define
B(s,t) to be the least value of (5) subject to (7). The calcula-
tion of the best monotonic increasing fit on [t;_1,¢;] together
with all the numbers «(t;—1,%), @ = tj_1,tj-1 +1,...,¢;
is achieved in only O(t; — t;_1) computer operations. This
surprisingly little work contributes heavily to the efficiency
of the calculation of an optimal piecewise monotonic fit.

These two properties lead to the important characterization
of the problem that the first ¢,_; components of an optimal
fit with & sections to the data {¢;: ¢ = 1,2,...,n} give
an optimal fit with k¥ — 1 sections to the data {¢;: @ =
1,2,...,tx—1} and the last n — t;_; + 1 components give
the optimal fit to the data {¢; : @ =tg_1,t,—1+1,...,n}
subject to the constraints vy, , <y, 41 <o <y, if k
is odd, or subject to the constraints ¥, , > Yt 41 > -0 >
Yi,.» if k1S even.

Hence introducing the notation

t
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sections for m € [1,k], the integer ¢;_; at an optimal fit
satisfies the equation
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where 7y (k, n) is the least value of (1).

Provided that the sequences {y(k—1,s): s=1,2,...,n}
and {a(s,n) : s = 1,2,..., n} are available, the right
hand side of (8) when k is odd is the least value of
{y(k=1,8)+ a(s,n) : s=1,2,...,n} and can be found
in O(n) computer operations; similarly when k is even.
Therefore in order to calculate v(k,n), we begin with the
values v(1,t) = a(1,t), for t = 1,2,...,n and proceed by
applying the dynamic programming formulae

min [y(m —1,) 4+ a(s,t)],m odd

v(m,t) = 1§1€H§1f [y(m —1,5) + B(s,t)] ,m even ©)
1<s<t ) ) ) s
fort =1,2,...,n, for every value of m € [2, k|. It follows

that y(k,n) can be found in O(kn?) computer operations.

We let also 7(m,t) be the value of s that minimizes
expression (9), for each value of m and t. When m = k
occurs, the value 7(k, n) is the integer ¢;_ that is required
in equation (8). Hence, with ¢y, = 1 and ¢; = n, we obtain
the sequence of optimal values {t; : j =1,2,...,k—1} by
the backward formula

tm—1 =T1(Mm,ty), form=~kk—1,...,2. (10)

Finally, the components of the best fit are calculated by
independent monotonic approximation calculations. They are
monotonic increasing on [1,%;] and on [t;_1,t;] for odd j
in [2, k] and monotonic decreasing on [¢;_1,%;] for even j
in [2,k].

Formulae (9) provide the basis for the calculation, but
far more efficient formulae are employed in practice by
restricting the search for the optimal values of {t; : j =
1,2,...,k—1} to certain subsets of the data. To be specific,
we define ¢ € [1,n] to be the index of a local minimum of the



data if, moving to the left or right from ¢, in the sequence
{¢; : i =1,2,...,n}, we find either ¢; > ¢; or the end
of the sequence before ¢; < ¢; occurs, and analogously
for a local maximum. The indices of local minima and
local maxima of the data are collected in the sets £ and
U respectively. Both the sets £ and U can be formed in
O(n) operations, their elements are in strictly ascending
order and their interior elements interlace. Usually each of
these sets has fewer than n/2 elements. Therefore, restricting
s and t to the sets £ and U/ or U and L, formulae (9)
require O(k|U|?) computer operations, which is a reduction
in the amount of work at least by a factor of 4. Further, an
alternative application of the dynamic programming formulae
by a binary tree algorithm [8] reduces substantially this
complexity to only O(k|U|log, |U]).

III. ESTIMATION OF PEAKS OF A RAMAN SPECTRUM

In this section we present an example of our method
intended to illustrate the estimation of peaks in a Raman
spectrum sample. As was noted already, the location of
peaks and their intensities for the Raman spectra are the
signature of a sample. Raman spectroscopy is a powerful tool
for analysis and chemical monitoring of solids, liquids and
solutions, as well as for providing information on physical
characteristics [19]. For medical and industrial applications
see Renishaw plc [20]. The complexity of the underlying
physical laws make this a good test of the power of the
piecewise monotonic approximation method in peak finding.

We downloaded the datafile named “amylose” from
SPECARB, an experimental database containing Raman
spectra of carbohydrates, which is freely available on the
website [22] of the Department of Food Science, Faculty
of Science, University of Copenhagen. This spectrum was
sampled on a Perkin Elmer System 2000 interferometer with
a Nd:YAG laser using excitation 1064 nm, laser power 400
mW, Raman shift 3600-0 cm™!, accumulations 256 and
resolution 4 cm™!.

The amylose datafile contains two-column data, where the
first column keeps the Raman shift (cm~') and the second
column keeps the intensity, which provide the values {z; :
i =1,2,...,n} and {¢; : ¢ = 1,2,...,n} respectively
for our calculations. The abscissae {z; : ¢ = 1,2,...,n}
are irrelevant to our calculation, except that they are used
in our plots. The file contains 3401 pairs of data (having
|| = 404 and |L| = 405), far too many to be presented as
raw numbers in these pages. However, we may easily capture
the main features of this data set by looking at Fig. 1. Indeed,
we can see, for instance, very small deviations, some very
distinguishable peaks, sharp increases and several peaks with
lower intensity.

We seek turning points that might reveal major monotonic
trends. We fed the data to our computer program with k =
20 without any preliminary analysis. The resultant fit and
the peaks with the corresponding intensities are displayed in
Fig. 1. We see that the fit to the data is much smoother than
are the data values themselves and the sum of squares of
residuals is equal to 11.25.

In case that the first attempt at estimating suitable turning
points of these data is not entirely satisfactory, we carried
out two more runs with larger numbers of turning points in
order to give more emphasis to minor monotonic trends. The

piecewise monotonic approximation with k¥ = 32 was calcu-
lated giving 31 turning points and having sum of squares of
residuals equal to 2.39. Fig. 2 displays the data, the fit and the
turning points. The new fit maintained the turning points of
the fit presented in Fig. 1, while the extra turning points have
indices 441,459,691, 709, 735,761,1081, 1095, 1264, 1284,
1364 and 1382.

Further, the piecewise monotonic approximation with k =
36 gave automatically four extra turning points with indices
339, 357,405 and 419 that enhance the left hand side of the
fit in Fig. 2. The fit is presented in Fig. 3, the extra peaks
are highlighted and the sum of squares of residuals is equal
to 1.58.

We see that the piecewise monotonic approximation has
revealed the most important turning points (peaks and
troughs), while it interpolates the data at these points. By
increasing k, piecewise monotonic approximation had the
freedom to make the sum of the squares of residuals smaller,
while it maintained the most important turning points.

Therefore we investigate further this behavior of the
approximation by presenting in Table I the turning point
positions by piecewise monotonic fits to the amylose data
for various values of k. In the right hand side part of
Table I we give the positions of the turning points of each
optimal fit for k& € {2,4,8,12, 16,20, 24, 28, 30, 32, 34, 36}
in correspondence with the column labeled “t;”, which is
derived when k£ = 36. For example, when k£ = 4 the
turning points occur at positions 481 (peak), 2454 (trough)
and 2905 (peak) as indicated by the times signs in the
column labeled “4”. A comparison of the k-columns shows
the differences in the final fits to the given Raman spectrum
with respect to the values of k. It is noticeable that as k
was increased to an adjacent value, the extra turning points
of the optimal fit occurred between adjacent turning points
of the associated optimal fit for the previous k. Although
it is usual in practice that the turning points of an optimal
fit with £ monotonic sections are preserved by the optimal
fit with k& 4+ 2 monotonic sections, it should be noted that
this depends on the specific calculation and need not happen
generally. Indeed, it has been shown by [4] that any algorithm
based on local improvements of an optimal approximation
with k£ monotonic sections cannot succeed in finding more
than a local minimum of (1), which need not be a global
minimum.

Two points are worth emphasizing with respect to this
example. Firstly, the method effectively captured the trends
of the data and detected appropriate peaks as required by
the values of k. Moreover, by comparing Figs. 1, 2 and
3, there seems that as k increased, the method detected
subtle trends in the data, which are not detected for smaller
values of k, because they are rather conservative. Secondly,
the problem of systematic differences between piecewise
monotonic approximations for consecutive values of k to
the same data needs attention, which is likely to lead to
the development of more efficient algorithms. Further, if
there exists appropriate a priori information to be taken into
account about the required number of peaks, it is very useful
that the analyst may well combine it with the automatic
feature of our method.
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Piecewise Monotonic Fit (k = 20) to Amylose Raman Spectrum
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Detected peaks (circles) by a best piecewise monotonic fit with & = 20 to 3401 data points (plus signs) of the amylose Raman spectrum. The

solid line illustrates the best fit. The numbers give the intensities at the corresponding Raman shifts (cm™1).
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Fig. 2. Asin Fig. 1, but k = 32. The extra peaks as compared to Fig. 1 are indicated by circles.

IV. CONCLUSIONS

Piecewise monotonic approximation as a data smoothing
approach can have many applications. In this work we have
presented an application that shows the effectiveness of
piecewise monotonic approximation to peak estimation of
spectra that are represented by some noisy measurements of
their values. The optimization calculation may have a very
large number of local minima, but we have procedures that
obtain a global solution in quadratic complexity with respect
to n. Several improvements of the calculation are available
in [5] and [10], which have been taken into account by

the software package [6] as well as by the unpublished as
yet software [9]. These software packages are far faster in
practice than the complexity indicates in theory. They are
suitable for calculations that involve very large amounts of
data points and they would be most useful for real time
processing applications. In view of the effort and time that
was needed to develop the Fortran software, it is expected
that these packages will be of value to many computer
calculations.

The method achieves the piecewise monotonicity property
it sets out to achieve and, generally, any degree of undulation
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Fig. 3. As in Fig. 1, but k£ = 36. The extra peaks as compared to Fig. 2 are indicated by circles.

TABLE I
LEFT THREE COLUMNS: TURNING POINTS IN THE AMYLOSE SPECTRUM BY A BEST FIT WITH k = 36 MONOTONIC SECTIONS. RIGHT TWELVE
COLUMNS: THE TURNING POINT POSITIONS OF THE OPTIMAL FIT FOR VARIOUS VALUES OF k ARE INDICATED BY THE TIMES SIGN

P t;  Intensity (¢t ) k= 2 4 8 12 16 20 24 28 30 32 34 36
0 200 1.61 X X X X X X X X X X X X
1 317 3.14 X X X X X X X
2 339 2.75 X X
3 357 3.11 X X
4 387 2.29 X X X X X X X
5 405 2.90 X
6 419 2.53 X
7 441 3.31 X X X X X
8 459 2.64 X X X X X
9 481 7.83 X X X X X X X X X X X
10 555 1.73 X X X X X X X
11 577 2.72 X X X X X X X
12 691 1.10 X X X
13 709 1.46 X X X
14 735 1.05 X X X X
15 761 1.42 X X X X
16 807 0.98 X X X X X X X X X X
17 861 3.17 X X X X X X X X X
18 883 1.39 X X X X X X X X X
19 948 3.41 X X X X X X X X X
20 975 1.04 X X X X X X X X X
21 1081 4.42 X X X X X
22 1095 3.63 X X X X X
23 1126 4.96 X X X X X X X X X X
24 1188 1.16 X X X X X X X X X X
25 1264 2.63 X X X X X
26 1284 1.95 X X X X X
27 1337 5.22 X X X X X X X X X X
28 1364 3.54 X X X X X
29 1382 4.11 X X X X X
30 1437 2.05 X X X X X X X X
31 1461 3.57 X X X X X X X X
32 2454 0.40 X X X X X X X X X X X
33 2905 7.85 X X X X X X X X X X X X
34 3118 0.58 X X X X X X X X X
35 3377 1.37 X X X X X X X X X
36 3600 0.07 X X X X X X X X X X X X

in the data can be accommodated by choosing a suitable it smooths the data as little as possible, it leaves increases or
k. Besides the efficiency of the algorithms, an advantage decreases unchanged and both sharp and smooth increases
of the piecewise monotonic approximation method is that remain unchanged as noted by [25]. Another advantage of



the piecewise monotonic approximation for peak estimation
is that the presence of a peak in the data does not introduce
any perturbations at all into the approximation. Instead, in
wavelet or spline approximation it is difficult to represent
the data at a peak, because the presence of a peak causes
the propagation effect to introduce substantial perturbations
away of the peak. Hence piecewise monotonic approximation
provides a considerable advantage over low-pass filtering or
over the use of basis functions to represent the data, which
usually result in ringing artifacts [12], [13], [15], [16].

The algorithms that we have developed may be applied
to any data set. However, it would be very helpful to try
to solve particular peak estimation problems, in order to
receive guidance from numerical results and, for instance,
from medical imaging practices [2], [7], [21] or from other
application areas [23], [24]. In some applications, such as
nuclear magnetic resonance and Raman spectroscopy we
often have good estimates of k£ [16] as well as databases [18]
which keep estimates of peak positions that can be further
utilized for developing automatic procedures. In addition, one
may well combine certain features of our method with, for
example, wavelets [14], [15] and splines [1], [11] or other
smoothing techniques [3] or pattern recognition techniques
[17] if there exists an opportunity for improved practical
analyses in peak estimation.
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